A mechanical erosion model for two-phase mass flows

نویسنده

  • Shiva P. Pudasaini
چکیده

Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosiondeposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. We show that mechanically deposition is the reversed process of erosion. We derive mechanically consistent closures for coefficients emerging in the erosion rate models. We prove that effectively reduced friction in erosion is equivalent to the momentum production. With this, we solve the long standing dilemma of mass mobility, and show that erosion enhances the mass flow mobility. The novel enhanced real two-phase model reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag with erosion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

Numerical Investigation of the Influence of Sand Particle Concentration on Long Radius Elbow Erosion for Liquid-Solid Flow

Erosion caused by sand transportation in flow changing devices is a serious concern in the hydrocarbon and mineral processing industry, which entail to failure and malfunction of flow devices. In this study, computational fluid dynamics (CFD) with discrete phase models (DPM) were employed for analysis of carbon steel long radius 90-Degree elbow erosion due to the sand concentration of 2, 5 and ...

متن کامل

Comparison of the hyperbolic range of two-fluid models on two-phase gas -liquid flows

In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I and form II). In forms I and II, pressure correction terms are hydrodynamic and hydrostatic, respecti...

متن کامل

Simulation of Boiling in a Vertical Channel Using Ensemble Average Model

Simulation of turbulence boiling, generation of vapour and predication of its behaviour are still subject to debate in the two-phase flow area and they receive a high level of worldwide attention. In this study, a new arrangement of the three dimensional governing equations for turbulence two-phase flow with heat and mass transfer are derived by using ensemble averaging two-fluid model and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016